Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Ann-vertex graph is calledC-Ramseyif it has no clique or independent set of size$$C\log _2 n$$(i.e., if it has near-optimal Ramsey behavior). In this paper, we study edge statistics in Ramsey graphs, in particular obtaining very precise control of the distribution of the number of edges in a random vertex subset of aC-Ramsey graph. This brings together two ongoing lines of research: the study of ‘random-like’ properties of Ramsey graphs and the study of small-ball probability for low-degree polynomials of independent random variables. The proof proceeds via an ‘additive structure’ dichotomy on the degree sequence and involves a wide range of different tools from Fourier analysis, random matrix theory, the theory of Boolean functions, probabilistic combinatorics and low-rank approximation. In particular, a key ingredient is a new sharpened version of the quadratic Carbery–Wright theorem on small-ball probability for polynomials of Gaussians, which we believe is of independent interest. One of the consequences of our result is the resolution of an old conjecture of Erdős and McKay, for which Erdős reiterated in several of his open problem collections and for which he offered one of his notorious monetary prizes.more » « less
-
List-decodability of Reed-Solomon codes has received a lot of attention, but the best-possible dependence between the parameters is still not well-understood. In this work, we focus on the case where the list-decoding radius is of the form r=1−ε for ε tending to zero. Our main result states that there exist Reed-Solomon codes with rate Ω(ε) which are (1−ε,O(1/ε)) -list-decodable, meaning that any Hamming ball of radius 1−ε contains at most O(1/ε) codewords. This trade-off between rate and list-decoding radius is best-possible for any code with list size less than exponential in the block length. By achieving this trade-off between rate and list-decoding radius we improve a recent result of Guo, Li, Shangguan, Tamo, and Wootters, and resolve the main motivating question of their work. Moreover, while their result requires the field to be exponentially large in the block length, we only need the field size to be polynomially large (and in fact, almost-linear suffices). We deduce our main result from a more general theorem, in which we prove good list-decodability properties of random puncturings of any given code with very large distance.more » « less
-
Abstract We prove several different anti-concentration inequalities for functions of independent Bernoulli-distributed random variables. First, motivated by a conjecture of Alon, Hefetz, Krivelevich and Tyomkyn, we prove some “Poisson-type” anti-concentration theorems that give bounds of the form 1/ e + o (1) for the point probabilities of certain polynomials. Second, we prove an anti-concentration inequality for polynomials with nonnegative coefficients which extends the classical Erdős–Littlewood–Offord theorem and improves a theorem of Meka, Nguyen and Vu for polynomials of this type. As an application, we prove some new anti-concentration bounds for subgraph counts in random graphs.more » « less
An official website of the United States government

Full Text Available